Radial polarization

A beam of light has radial polarization if at every position in the beam the polarization (waves) (electric field) vector points towards the centre of the beam. In practice, an array of waveplates may be used to provide an approximation to a radially polarized beam. In this case the beam is divided into segments (eight, for example), and the average polarization vector of each segment is directed towards the beam centre.[1]

Radial polarization can be produced in a variety of ways. It is possible to use a liquid crystal device to convert the polarization of a beam to a radial state,[2] or a radially polarized beam can be produced by a laser in which the Brewster window is replaced by a cone at Brewster's angle.[3]. A related concept is azimuthal polarisation, in which the polarisation vector is tangential to the beam. If a laser is focussed along the optic axis of a birefringent material, the radial and azimuthal polarizations focus at different planes. A spatial filter can be used to select the polarization of interest[4]

A radially polarized beam can be used to produce a smaller focused spot than a more conventional linearly or circularly polarized beam[5], and has uses in optical trapping.[6]

See also

References

  1. ^ Saito, Y.; Kobayashi, M.; Hiraga, D.; Fujita, K.; Kawano, S.; Smith, N. I.; Inouye, Y.; Kawata, S. (March 2008). "z-Polarization sensitive detection in micro-Raman spectroscopy by radially polarized incident light". Journal of Raman Spectroscopy 39: 1643. Bibcode 2008JRSp...39.1643S. doi:10.1002/jrs.1953. 
  2. ^ "Radial-Azimuthal Polarization Converter". http://www.arcoptix.com/radial_polarization_converter.htm. Retrieved 2008-09-30. 
  3. ^ Kozawa, Yuichi; Sato, Shunichi (2005). "Generation of a radially polarized laser beam by use of a conical Brewster prism". Optics Letters 30 (22): 3063–3065. Bibcode 2005OptL...30.3063K. doi:10.1364/OL.30.003063. PMID 16315722. 
  4. ^ Erdélyi, Miklós; Gajdátsy, Gábor (2008). "Radial and azimuthal polarizer by means of a birefringent plate". Journal of Optics A: Pure and Applied Optics 10 (5): 055007. Bibcode 2008JOptA..10e5007E. doi:10.1088/1464-4258/10/5/055007. 
  5. ^ Quabis, S.; Dorn, R.; Muller, J.; Rurimo, G.K.; Leuchs, G. (2004). Radial polarization minimizes focal spot size. Washington, OSA, Optical Society of America: Optical Society of America. 615–616. doi:10.1109/IQEC.2004.242867. ISBN 1-55752-778-4. 
  6. ^ Qiwen Zhan (2004). "Trapping metallic Rayleigh particles with radial polarization,". Optics Express 12 (15): 3377–3382. Bibcode 2004OExpr..12.3377Z. doi:10.1364/OPEX.12.003377. PMID 19483862.